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Abstract 

It is known that symmetric orbits in g* for any simple Lie algebra g are equipped with a Pois- 
son pencil generated by the Kirillov-Kostan-Souriau bracket and the reduced Sklyanin bracket 
associated to the “canonical” R-matrix. We realize quantization of the Poisson pencil on CP” type 
orbits (i.e. orbits in sZ(n + l)* whose real compact form is CP”) by means of q-deformed Verma 
modules. 
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1. Introduction 

The problem of quantization of Poisson brackets is one of the most important in math- 
ematical physics. In the framework of the deformation quantization scheme going back to 
the works by A. Lichnerowicz and his school (cf. [3]) it can be formulated as follows. Given 
a variety M equipped with a Poisson bracket, it is necessary to construct a flat deformation 
d% of an algebra A = Fun(M) of functions over A4 ’ such that the corresponding Poisson 

* Corresponding author. E-mail: gourevitch@univ-valenciennes.fr 
I We say that any algebra Ah depending on a formal parameter R is afrar deformation (or simply, deforma- 

tion) of A if Sz = .4h//h& and da is isomorphic to A[@]] as C[[h]]-modules. Hereafter, V[[h]] where V 
is a linear space stands for the completion of V@C C[[tt]] in the h-adic topology (in what follows the basic 
field is k = C). Abusing notation we will let A -+ dpI denote the deformation in question. Two-parameter 
flat deformation can be defined in a similar way. 
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bracket (which exists for any flat deformation of a commutative algebra) coincides with the 
initial one. 

The existence of such a quantization for any nowhere degenerated (i.e. defined by a 
symplectic structure) Poisson bracket had been shown in [5]. Recently, Kontsevich [28] has 
proved that any Poisson bracket is quantizable in the above sense. 

Nevertheless, physicists are interested in an operator quantization, i.e. they want to realize 
the quantum algebra A* as an operator algebra in a linear (ideally, Hilbert) space. This 
enables them to carry out a spectral analysis of Himiltonians and to compute partition 
functions and other numerical characteristics of quantum models. Such a quantization of 
non-degenerated Poisson bracket (on any compact smooth variety) has been realized by 
Fedosov [ 141. In fact, the famous Kirillov-Duflo orbit method which consists in assigning 
a representation p: g -+ End V of a Lie algebra g to an orbit 0 c g* can be considered as 
a particular case of the Fedosov approach. (We do not discuss here the limits of the orbit 
method, in the sequel we will restrict ourselves to semisimple orbits in g* for simple Lie 
algebra g.) 

The quantization procedure suggested by Fedosov leads to an operator algebra equipped 
with a commutative trace. In fact, such a trace is delivered for appropriate quantum algebras 
by the Liouville measure of the initial Poisson bracket. However, a generic Poisson bracket 
does not possess any invariant measure and consequently it is not clear what is a trace in 
the corresponding quantum algebra. 

In the early 1990s one of the author (DG) suggested certain Poisson brackets associated 
to classical R-matrices whose quantization leads to operator algebras in twisted categories. 
Traces in such algebras are also twisted (cf. [ 17,241). These algebras arise from quantization 
of Poisson pencils generated by the linear Poisson-Lie bracket on g* or its restriction to 
an orbit, called the Kirillov-Kostant-Souriau (KKS) bracket, and by a bracket naturally 
associated to a solution R E /\2 (g) of the classical non-modijed Yang-Baxter equation. 

[[R, R]] = [R12, R13] + [R12, R23] + [R13, R2’] = 0 (1.1) 

Here, as usual R12 = R 18 id, etc. 
Let us describe the latter bracket. Let A4 be a variety equipped with a representation 

p: g + Vect(M), where Vect(M) stands for the space of vector fields. Then the following 
bracket, 

If, g}R = P(P@~UU, df @ W, f, g E FunOf), (1.2) 

is Poisson. Here ( , ) is the pairing between differential forms and vector fields on M 
extended to their tensor powers and p is the usual commutative product in the space Fun(M). 
The bracket { , }R is called R-matrix bracket. If M = g* or M = 0 c g* is an orbit we 
take p to be the coadjoint representation or its restriction to the orbit. 

It is not difficult to see that in the last case any bracket of the family 

I , Lb =a( , IKKS +W , IR (1.3) 

is Poisson. Here by { , }xks we mean either the KKS bracket or the linear Poisson-Lie 
bracket on g*. Thus, we have a Poisson pencil well-defined on g* or on an orbit in g*. 
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A procedure of quantizing this Poisson pencil can be realized in two steps (we call such 
procedures “double quantization”). In the first step one quantizes only the KKS bracket by 
means of the orbit method or by means of generalized Verma modules as it is described 
in Section 3. Then one twists the quantum operator algebra as it is described in Section 2. 
The resulting object is a two-parameter family of operator algebras in a twisted category. It 
comes with a deformed trace which is no longer commutative but it is S-commutative in the 
spirit of a super-trace. Here S is an involutive (S2 = id) twist, i.e. an operator acting in the 
tensor square of this algebra and satisfying the quantum Yang-Baxter equation (QYBE) 

Let us remark that by means of a similar twisting one can introduce natural “S-analogues” 
of basic objects of geometry and analysis. Thus, S-analogues of commutative algebras, 
vector fields, Lie algebras, (formal) Lie groups were defined, in the spirit of super-theory, 
in [15,18] (cf. also [22,24]). 2 However, a straightforward generalization of these notions 
to non-involutive twists (connected, say, to the quantum group (QG) U, (g)) usually leads 
to a non-flat deformation. (From our viewpoint the principle “raison d’&re” for objects 
belonging to the category of CJ, (g)-modules is that they should represent a flat deformation 
of their classical counterparts.) 

The main purpose of the paper is to realize an operator quantization of Poisson pencils 
(1.3) associated to the “canonical” classical R-matrix 

R= c xaAx-a w~Q+ (&I, X-a) E A2(g)y (1.4) 

where g is a complex simple Lie algebra, O+ stands for the set of its positive roots with 
respect to a fixed triangular decomposition of g and ( , ) stands for the Killing form. 

This R-matrix satisfies the so-called classical modified YBE which means that the 
element [[R, R]] is non-trivial and g-invariant. Since this element is not identically zero, 
the associated R-matrix bracket is Poisson only on varieties where the three-vector field 
pB3 ([ [ R, RI]) vanishes. Such varieties were called in [21] the R-matrix type varieties. All 
R-matrix type orbit in g* were classified in [21]. In particular, all symmetric orbits in g* 
are R-matrix type varieties. (Let us recall that an orbit 0, of a point x is called symmet- 
ric if there exists a decomposition g = k $ m, where k is the stabilizer of x such that 

[k, kl c k b, ml c k [k, ml c m.) 
Moreover, the R-matrix bracket over a symmetric orbit coincides with one of the two (left- 

or right-invariant) components of the Sklyanin bracket reduced to the orbit (recall that the 
Sklyanin bracket is the difference between the left- and the right-invariant brackets defined 

2 All these objects are also well-defined for some non-quasiclassical twists (i.e. twists which cannot be 
obtained by a deformation of the ordinary flip S = a). One can naturally associate S-symmetric and S- 
skewsymmetric algebras of V to an involutive twist S: V@* + V@* where V is a linear space. If the twist is 
quasiclassical, i.e., if it is a deformation of the usual flip, then the Poincard series of these algebras coincide 
with the classical ones, while those series corresponding to non-quasiclassical twists can be drastically 
different. The first examples of such twists were given in [15] (similar Hecke type twists were introduced in 
1161). 
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by (1.2), where p is the natural homorphism of g into the space of left- or right-invariant 
vector fields on the corresponding group G). Meanwhile, the other component being re- 
duced becomes proportional to the KKS bracket. This implies that on any symmetric orbit 
the R-matrix and the KKS brackets are compatible and therefore they generate the Poisson 
pencil (1.3). 

Note that the one-sided invariant components of the Sklyanin bracket can be reduced to 
any semisimple (ss) orbit in g* (i.e, to that of an ss element), but each of them becomes a 
Poisson bracket only on symmetric orbits (cf. [8,27]). 

The Poisson pencil (1.3) with the R-matrix (1.4) on symmetric orbits has been quantized 
in the spirit of deformation quantization in [ 111. The resulting object of the quantization pro- 
cedure suggested in [ 1 l] is a two-parameter family of associative U, (g)-invariant algebras. 
Let us make it precise that an algebra A is called U, (g)-invariant (or U, (g)-covariant) if 

u . (~1x2) = (U(I) -x1Nq2) .x2> VU E U,(g), xl, x2 E A. (1.5) 

Hereafter u(r) @ ~(2) stands for A(u) ( Sweedler’s notations). The algebras A possessing 
this property will be called quantum or braided algebras, while by twisted algebras we 
mean the algebras belonging to a twisted category equipped with an arbitrary twist. 

However, the product in the quantum algebra is realized in [ 1 l] by a series in two formal 
parameters, meanwhile the QG U, (g) appears as U(g) [ [u]] but equipped with a deformed 
coproduct (the so-called, Drinfeld’s realization, see Section 2). 

In the present paper we perform a double quantization of CPn type orbits by the operator 
method. By CP” type orbits we mean the orbits in sZ(n)* of elements ~~01 or ,uw,_ 1 where 
wr (w,_t ) is the first (the last) fundamental weight of sZ(n) and p E C is an arbitrary non- 
trivial factor. Compact forms of these complex orbits are just CP”-’ embedded into su(n)* 
as closed algebraic varieties. 

More precisely, we represent our two-parameter quantum object AA,~ as an operator 
algebra in braided (or q-deformed) generalized Verma modules. Similar to the previous 
case arising from the classical non-modified YBE, our quantization procedure consists of 
two steps. 

The first, “classical”, step is realized as follows. There exists a natural way to quantize 
ss orbits in g* for any simple Lie algebra g by generalized Verma modules. Let M, be 
such a module of highest weight w (its construction is given in Section 3) and po: T(g) --+ 
End M, be the corresponding representation of the free tensor algebra T(g). Then, the 
operator algebras Ah = ImAp,lh c EndM,[[A]] can be treated as quantum objects with 
respect to the KKS bracket on the orbit 0, c g* of the element w (we regard w as an 
element of g*, see an explanation below). The passage from the representation pw to the 
representation Apolh will be referred to as a renormalization procedure. 

Let us remark that the operator algebra Ah is an object of the category of g-invariant 
algebras similar to the initial function algebra A = Fun(Ow). 

The second step consists of a braiding of the algebras Ah. As a result we get the above- 
mentioned two-parameter family of U, (g)-invariant operator algebras Ah,q. Let us empha- 
size that our approach to representing quantum algebras by means of braided generalized 
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Verma modules has the following advantage. The parameters fi and q can be specialized: 
the operator ralization of the algebra dh,q is well-defined for any value of A and a generic q. 

Moreover, the flatness of deformation A += dh,y is assured automatically. Let us remark 
that the quantum algebra dh,q can also be represented by a system of some algebraic 
equations. For the CP" type orbits these equations are quadratic-linear-constant. It is not so 
difficult to guess a general form of these equations. The problem is to find the exact meaning 
of factors arising in them which ensure the flatness of deformation of the corresponding 
quotient algebras. Various ways to look at these factors were discussed in [8,9,19,23]. The 
“operator method” presented here is the most adequate way to solve this problem. 

Thus, compared with [ 1 l] our approach enables us to realize quantum counterparts of the 
Poisson pencil in question explicitly in the spirit of non-commutative algebraic geometry. 

The paper is organized as follows. In Section 2 we describe various algebraic structures 
connected to involutive twists arising from quantization of R-matrices satisfying the clas- 
sical non-rnodz@d YBE. We show that certain quotients of twisted Hopf algebras are the 
appropriate objects allowing to explicitly describe the quantized orbits in g*. We also anal- 
yse the difference between this case (we refer to it as triangular or involutive) and the other 
one connected to the quasitriangular QG U,(g). 

Section 3 is devoted to the “classical step” of quantization. The final object of this step 
is the mentioned above family of algebras d*. Then we realize a q-deformation of these 
algebras as follows. We equip g = sl(n) with a structure of a U,(g)-module, extend the 
action of the QG U, (g) to its enveloping algebra and represent this algebra in the q-deformed 
generalized Verma modules considered on the first step. These constructions are described 
in Sections 4 and 5. They result in a two-parameter family dh.q presented in Section 6. 

Completing the introduction we want to pose the following question: how is it possible 
to define a proper trace in a quantum algebra arising from a given Poisson bracket by virtue 
of [28]? As our examples show, such traces are not necessarily commutative. (Although 
we are dealing with the complexification of CP" the trace defined by a projection of the 
algebra dh.q to its trivial component is well defined on this algebra since it corresponds to 
the compact form of the orbits in question, cf. [25] where such a trace is studied in the sl(2) 
case.) Thus, quantizing certain Poisson structures we should enlarge the framework of the 
ordinary Quantum Mechanics and use operator algebras belonging to twisted categories. We 
consider this approach as a further step in constructing generalized (or twisted) Quantum 
Mechanics, including Quantum super-Mechanics and that dealing with involutive twists 
suggested in [24]. We also hope that an extension of this approach to infinite-dimensional 
Lie algebras could be useful for understanding the quantum anomaly problem. 

2. Triangular and quasitriangular cases: Comparative description 

2.1 

Let us first consider certain algebraic structures arising from R-matrices satisfying the 
classical YBE (1.1). Let us fix such an R-matrix R. 
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By a Drinfeld’s result [12] there exists a series F = F, E U(g)@2[[v]] quantizing the 
R-matrix R in the following sense: F, = 1 + u P + e a ., where P E g@‘, P - P2’ = 2R, 
and 

AtzFF’2 = A23FF2’ E’F = e2F = 1. (2.1) 

Here A: U(g) + U(g) @2 is the usual coproduct and E : U(g) + C is the counit in U(g) 
(all operators are assumed to be naturally extended to U(g) [ [v]]). Using F one can deform 
the usual Hopf structure of the algebra U(g) in (at least) two different ways. 

The first way consists of the following procedure. Let us introduce a new coproduct 
setting 

A,(u) = F-t A(u)F = F(+@(I) @ F;2;‘)u(~) F(2). 

Here F(I) C3 F(2) (resp., F;: 63 Fc;: stands for F (resp., F-l). 
Then the algebra U(g)[[u]] equipped with the initial product and unit, the coproduct AF 

and the uniquely defined counit and antipode (cf. [ 13,201 where the antipode is expressed 
via F) becomes a Hopf algebra looking like the famous QG U,(g). Let us denote it by H. 

Another way consists of a simultaneous deformation of the product and coproduct as 
follows: 

A(u) = ad F-‘(A(u)) = udF(;: (U(I)) @I ad F&U(~)) 

and 

F(UI 8 ~2) = Aad F(ul @ ~2)) = l~(adF(l)(u~) @ad F(2)(~2)) 

Here Al. is the initial product in U(g) and ad F*’ is defined by 

(2.2) 

&X(Y) = [X, Y] 

and 

&(X1X2.. . Xp)(Y) = UdXl(UdX2(. . . udX,(Y) . . .). 

The space U(g) [ [u]] equipped with these product and coproduct, the classical unit, counit 
and antipode becomes a twisted Hopf algebra. Essentially, this means that 

AP(ut @ 242) = (P 8 iI)(id @ S Q9 id)(h(ut) 8 A(W)), (2.3) 

where S = S, = F-‘a F and c is the flip (F and F-’ act in the above sense by ad @ ad). 
Let ?? denote this twisted Hopf algebra. The reader can easily verify that the operator S 
satisfies the QYBE. 

Let us observe that the A-primitive elements X E U(g), i.e., such that A(X) = X @ 1 + 
1 @ X (they are just the elements of the algebra g) are still A-primitive. This follows from 
the second relation of (2.1). 

The algebra ?? can be treated as the enveloping algebra of a generalized (or S-) Lie 
algebra defined by the deformed Lie bracket [ , ] v = [ , ] F, or in more detailed form 

[X, Yl, = bdF(1)WL adF(2)O’)l. 
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An axiomatic description of such type of brackets is given, for example, in [ 181. Let g, 
denote the space g[[v]] equipped with the bracket [ , 1”. Its enveloping algebra defined 
naturally by 

U&v) = ~(g”)[r~lll{x 8 Y - S(x 63 Y> - [x3 Yl”} (2.4) 

is filtrated quadratic (more precisely, the ideal is generated by quadratic-linear elements.) 
Hereafter T(V) stands for the free tensor algebra of a linear space V and {I} stands for 

its ideal generated by a subset I c T(V). 
We also need the algebra dh,” = U(g”)h defined by formula (2.4) but with the bracket 

[ , Iv replaced by A[ , 1”. The algebra Aa,” is also filtered quadratic and moreover, 
possesses a twisted Hopf structure. Moreover, we have by construction the following: 

Theorem 1. The two-parameterfamily Ah,” is aflat deformation of the algebra Sym(g) = 
Fun (g”). The corresponding Poisson pencil is just (1.3) where { , }KKS is the linear 
extension of KKS bracket (Poisson-Lie one) and the bracket { , }R is associated to the 
initial R-matrix. 

By passing to the quotient A, = ~Ih,~/Adh,~ we get an S-commutative algebra which is 
also a flat deformation of the algebra Fun(g*). Let us make it precise that by this we mean 
an algebra A = A, equipped with an associative product ,X A@’ + A and an involutive 
twist S : A@’ + AB2 such that ,uS = p and Sp I2 = p23S’2S23. The last relation means 
that the product p is S-invariant. 

Now, let g be a simple Lie algebra. Then the enveloping algebra 77 = U (g”) is isomorphic 
to U (g) [[u]] . So, we can treat it as the algebra U(g) [[u]] but equipped with a new coproduct 
(still denoted by x). Thus, we have equipped the algebra U(g)[[u]] with two deformed 
coassociative coalgebraic structures converting it respectively into an Hopf algebra H and 
a twisted Hopf algebra ??. 

However, in some sense the properties of the latter algebra are closer to those of the 
usual enveloping algebra U(g). In the first place it is due to the fact that the algebra ?? 
possesses a generating set formed by a-primitive elements. Moreover, for this algebra its 
S-commutative analogue, i.e., the algebra A”, is well-defined and being equipped with the 
coproduct A is still a twisted Hopf algebra, as in the classical case. The passage from the 
latter algebra to Ah, v can be regarded as a twisted version of the quantization procedure of 
the linear Poisson-Lie bracket on g* consisting in a passage from the symmetric algebra of 
g to the enveloping algebra U(g). 

By means of A-primitive elements it is not difficult to introduce the notion of twisted (or 
S-)vector fields: the twisted version of the Leibnitz rule for an involutive S is well-known. 
It is worth noticing that the twisted vector fields are just classical ones but their action on 
functions is deformed as follows: 

POX> . a = PDF . ,dFda, X E g, a E Fun(M), (2.5) 

where p : g + Vect(M) is a representation of g into the space of vector fields on a variety 
M extended to Ug. 
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Unfortunately, the Hopf algebra H does not have, in general, any generating set formed 
by AF-primitive elements (the A-primitive elements are no longer AF-primitive). This is 
a reason why it is not so clear what is the natural analogue of the Leibnitz rule related to 
the quantum group H (although some palliative forms of “quantum Leibnitz rule” can be 
sometimes suggested). 

Let us consider now the category of U(g)-modules. It can be equipped with the twist 

sU,” = (Pv @ PC/Y’a(pU @ pV)F : u @ V[[ull + v @ V[[vll, ” 

where PC/ is the representation of V(g) in U. Thus, we have a twisted (tensor monoidal, in 
another terminology) category consisting of the same objects as the initial one but equipped 
with a new transposition. 

This twisted category can be regarded as a category of H-modules and as a category of 
%-modules. However, the action of an element X E ?? on a tensor product of two modules 
U and V must be defined in spirit of formula (2.3) by means of the twist S, transposing X(2) 
and U (here X(t) @X(2) = x(X)). In particular, in this way we can deform all (generalized) 
Verma modules into twisted ones. 

Let us remark that the renormalization procedure mentioned in Section 1 (cf. also 
Section 3) has its twisted analogue. While in the classical case the map hpw/h sends U(g) 

into End M,[[A]] (i.e., the image does not contain negative powers of h), in a deformed case 
such a property is satisfied only for an appropriated base in the deformed algebra. In the 
algebra ?? (which is isomorphic to H as an algebra) such a base is delivered by -primitive 
elements. 

Let us also mention the algebras dual to those H and g. Both of them can be treated as 
deformations of the function algebra Fun(G) on the group G. However, if the former one 
looks like a famous “RTT=lTR” algebra and possesses a Hopf algebra structure, the latter 
one looks like a reflection equation (RE) algebra. For involutive twists it has been introduced 
in [ 15,181 under the name of a monoidal group. In more general setting RE algebras appear 
as dual objects of Majid’s braided groups, cf. [3 11. Majid has also suggested a transmutation 
procedure converting one algebra to another. RE algebras associated to twists depending 
on a spectral parameter were considered in [29]. 

2.2 

Let us pass to the quasitriangular case, i.e., that related to the QG U,(g) where g is a 
complex simple Lie algebra. In this case there also exists a series F, quantizing the R-matrix 
(1.4) in the above sense. However, the first equation of (2.1) takes another form containing 
the Drinfeld’s associator 0 (cf. [4]). Moreover, the corresponding twist takes the form 

5 = & = F-‘aeV’/2F, (2.6) 

where t is the split Casimir. 
In this case the Hopf algebra H can be constructed in the same way as above. It is just the 

famous QG U, (g) but realized in an equivalent way as the algebra U(g) [ [ u]] equipped with 
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the deformed coproduct AF (we call this form of the QG_U,(g) its Drinfeld’s realization). 
However, the above construction of the twisted algebra H is no longer valid because the 
product E defined as above is not associative (the associativity default is due to Drinfeld’s 
associator). 

Nevertheless, a twisted Hopf algebra arising from the QG H exists: it can be obtained 
from H by means of a transmutation procedure which is dual to that mentioned above. In 
fact, this procedure does not deform the algebraic structure and transforms the coproduct 
A F into a new one z converting the QG into a “braided group”. 

However, this braided Hopf algebra is rather useless for us since it does not apparently 
possess any base of a-primitive elements. In fact, instead of looking for an appropriate 
base in U,(g) we construct another, complementary, algebra which possesses such a base. 
More precisely, we will introduce a space g, being nothing but g itself equipped with an 
action U, (g) -+ End gs of the GQ and represent the tensor algebra T (g4) into a q-deformed 
generalized Verma module A4tf, with u = pml. Namely, the image of the algebra T(G) 
with p expressed via ft in a proper way provides us with the quantum counterpart of the 
Poisson pencil (1.3) on the CPn type orbits (in the classical case A is proportional to CL-’ but 
in the quantum case their relation is a little bit more complicated). Hopefully, this method 
is valid for any symmetric orbit in g* for any simple Lie algebra g. 

Note that although we do not embed the space & into the GQ U, (g), such an embedding 
exists in the sl (n) case in virtue of Lyubashenko and Sudbery [30]. Using this embedding 
the authors of [30] have introduced a version of a quantum Lie sl (n) bracket. 

Completing this section we want to stress that in our approach the QG U,(g) play an 
auxiliary role. We use it only to describe the category to which our quantum algebras J& 
belong. Let us note that in the case when such a category is related to a non-quasiclassical 
twists mentioned in footnote 2 the algebras looking like Ah,4 can be constructed without 
any QG like objects. (In this case algebras of the “RTT=ITR” type can be introduced in 
the usual way, cf. [18], but their dual algebras differ drastically from the QG U,(g). We 
refer the reader to the paper [I] where an attempt to describe these algebras is undertaken.) 

3. CPn type orbits and their quantization by generalized Verma modules 

Let us realize now the first, classical, step of the double quantization procedure for orbits 
in question. 

Let g be a simple complex Lie algebra and let g = h @ n+ $ n_ be a fixed triangular 
decomposition where h is a Cartan subalgebra and n+ are nilpotent subalgebras. Consider a 
non-trivial element w E h* and extend it by 0 to the subalgebras nh. Thus, we can treat w as 
an element of g* . Let 0m be the G-orbit of w in g” where G is the Lie group corresponding 
to g acting on g* by coadjoint operators, and let 

U,~)KKS(X) = Kdf, @1,x), x E OOJ, 

be the KKS bracket on 0,. 
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It is well known that the orbit 0, is a closed algebraic variety in g*. Moreover, the space 
of (polynomial) functions A = FunC?,) can be identified with the quotient T(g)/(Z), where 
I is some finite subset in T(g) 

Thus, if 0, is a generic semisimple orbit (this means that in the decomposition o = 
C pitii where tii are fundamental weights ki # 0 for any i) the family I consists of 
elements XiXj - Xjxi, 1 5 i, j 5 dim g and Ci - ci (w), 1 5 i 5 rankg where Ci are 
invariant (Casimir) functions and ci (0) are certain constants depending on w. 

Let us consider another example of such type orbits, namely, those in g* = sZ(n)* of 
elements w = ~-LWI or w = pwn_t for some ,X E C. These orbits (or, more precisely, their 
real compact forms in su(n)*) can be identified with CP”-‘. They are called CP” type 
orbits. It is well known that these orbits can be described by means of a system of quadratic 
equations. An explicit form of this system follows from the structure of g@” as a g-module. 
Let us perform such an analysis. 

Proposition 1. Let g = sl(n), n > 4. Then the highest weights of irreducible components 
of the g-module g@’ are 

2w1+2wI--1, Wl +w,-I, w2+2wn-1, 
204 +w,_z, w2 +0+,_2, and 0. (3.1) 

All the irreducibles from (3.1) occur in gB2 with multiplicity one except the irreducible 
with the highest weight WI + o,_l (being the highest weight of g itselfi which occurs twice, 
once in the symmetric part I+ of gB2 and once in the skewsymmetric part I_. 

Note that in the sZ(2) case the decomposition (3.1) contains only the components with 
the highest weights. 

all with multiplicity one and in the sZ(3) case the component of the highest weight ~2 +wn_2 
does not appear. 

Let us denote the finite-dimensional irreducible g-module with the highest weight h by 
VA. The corresponding highest weight vector (assuming VA to be embedded in g@‘) will be 
denoted by sh. For the highest weight wt + w,,_t which occurs twice in (3.1) we denote 

v;+U,-t (resp. V&+w,-, ) the component of the highest weight wt + w,_l belonging to Z+ 

(resp. I-). Their highest weight vectors will be denoted by s&+~,_, (resp., s&+~,_,). 
The precise expressions for the corresponding highest weight vectors are presented in 
proposition 3 with a specialization 4 = 1. 

Then the orbit under consideration can be defined by the following system (here n > 4, 
the cases IZ = 2, 3 are left to the reader): 

V w2+2w,,+l - 3 

~or,equi~~~ntly,~~~~~~~iz~4,j~~+,n-1 = O 

V w?+w-2 = 0, so - co(w) = 0, G+W,_, - Cl (w)g = 0, 

(3.2) 

(3.3) 
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where so = Cl is a generator of the trivial module (Casimir element) and the constants 
ci(w), i = 0, 1, are 

n-l 
CO(cLW) = y& 

n-2 
Cl@.wl) = 2- 

n ’ (3.4) 

(if we normalize SO, s& +w,_, and & +W,m 1 by(4.15)-(4.17)withq = 1 andputs&++,n_, = 

&+Wn-, +&+w,_, >. The last equation of (3.3) is a symbolic form of the relations:, +@,_, = 
cl (w)g~,~ and all the descendants of this relation. 

Thus, we have A = Fun(c3,) = T(g)/{Z) with the family I c C @ g @ g@* generated 
by the 1.h.s. of formulae (3.2) and (3.3). So the algebra A is filtered quadratic. (Note that 
this system was given in [8] in a non-consistent form.) 

Since the orbit 0, is a symmetric space it is a spherical or multiplicity free variety, i.e. in 
the decomposition of the space Fun(C3,) into a direct sum of irreducibles their multiplicities 
are at most one. 3 It is well known that for the orbits of CP” type 

Fun(QJ x 6 Vk(w,+W,_,). 
k=O 

Let us now discuss a way to quantize the KKS bracket well-defined in the algebras 
A = Fun(O,) by means of generalized Verma modules. 

Let K be the stabilizer of the point w E g*. So, 0, = G/K. Let k = Lie(K) be the Lie 
algebra of the group K and p = k + n+ be a parabolic subalgebra of g. Let us consider the 
induced g-module 

MW = In@, = U(g) @‘TV I,, 

where 1, is the one-dimensional p-module equipped with the representation 

#%(x)e = (w, x)e, n E p 

(e is a generator of the module). The g-module M, is usually called a generaEized (in the 
sequel we omit this precision) I&ma module. Let p. : g + EndM, denote the induced 
representation. 

The operator algebra End M, is a quantum object with respect to the algebra of functions 
Fun (c3,). To give an exact meaning to this statement let us introduce an associative algebra 
d* depending on a parameter A as follows. Let us consider a map & = Ap,/h : g --+ 
End M,[[h]], extend it naturally to T(g) and introduce the algebra At, as a subalgebra of 
End M, [ [h]] being, by definition, the image ph (T(g)) . 

Proposition 2. The algebra Ah is aflbt deformation of A = Fun(C),) and the correspond- 
ing Poisson bracket is just the KKS one. 

3 Let us remark that the only symmetric orbits corresponding to the Lie algebra g= sl(n) are 

Ox = SL(n)/S(L(k) x L(n - k)), 1 5 k ( n - 1, 

whose real compact forms are Grassmanians (the cases k = 1 and k = n - 1 correspond to CP”-‘). 
Symmetric orbits in g* for other simple Lie algebras g have been classified by E. Cartan (cf. [26,27]). 
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This statement is valid for any simple Lie algebra and for any ss orbit. We demonstrate 
it for the orbits of CP” type where all the calculations can be easily done. In fact we will 
see that in this case the algebras A and dh/hd* are isomorphic as g-modules (they are 
consisting of the same irreducibles with multiplicity one). 

Let us first consider the finite-dimensional sl(n)-modules V,, w = ~CLWI , ,CL E Z+, where 
Z+ stands for the set of non-negative integers. Such a module can be naturally identified 
with a symmetric power of the vector fundamental space V,, (in the s/(2) case the factor 
ip is just the spin of the module). Its dimension is equal to (‘“z:;‘). 

Let us fix the following base in the space VW: 

Im1,. . . f m,) =.q’,.-,x,M”, c Wli = /A. 

Let hi E h, ei E n+, fi E n_, 1 5 i 5 n - 1, be a standard Chevelley base in the 
Lie algebra sl (n). The elements hi, ei, fi act in the module V, as first order differential 
operators 

a a a a 
ei = Xi - 

axj+l ’ 
fi = Xi+l-, 

axi 
hi = Xj- - Xi+l-. axi axi+l 

(3.6) 

In the base (3.5) the operators (3.6) look like 

eih,..., m,) =mi+llml,...,mi+r,mi+l -l,...,m,), 

filmI,..., m,)=miIml,...,mi -l,mi+l +l,... ,m,), (3.7) 

hilml,..., m,)=(mi-mi+l)lml,...,mi,mi+l,...,m,). 

It is well known that the sZ(n)-module EndVP,, , p E Z+, is isomorphic to the following 
multiplicity free direct sum: 

EndV,,, x 4 VQ,+~,_,J. (3.8) 
k=O 

Now let us pass to the Verma module M,, w = pwl, p E C. Similar to the above 
finite-dimensional modules V, it possesses the following base: 

Iml . . . , m,), c mk = PL, mk E Z+, k = 2, . . . . n. (3.9) 

Thus, the elements of the base (3.9) are labelled by the vectors (m2, . . . , m,), mk E Z+. 
The action of sl(n) on M,,, is given by formulae (3.6) and (3.7) as well. 

Formula (3.8) must be modified as follows: 

Imp&T(g)) M 6 vk(wl+on_l). 
k=O 

(3.10) 

We have replaced End V,,, by Imp, (T (g)) since for infinite-dimensional modules the map 
p. is no longer surjective. 

Let us now go back to the algebra dh = Imph (T(g) c EndM,[[A]]. By means of the 
decomposition (3.10) it is easy to show that dh is a flat deformation of the algebra A. The 
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map j.$, sends the Chevalley generators into operators acting according to formulae (3.7) but 
withmz,..., m, replaced by hm2, . . . , Am,. The commutators between the images of the 
Chevalley generators are those in sE(n) multiplied by A. This implies that the corresponding 
Poisson bracket is equal to the KISS one. 

Now let us represent the algebra dh as a quotient 

& = InG%(T(g) = TQNfilllKerph. 

In the case under consideration (g = sZ(n), w = pwt) this quotient is also a quadratic 
algebra. More precisely, the ideal Kerph is generated by a finite family Zh c C @ g@gB2, 
looking like that defined by the 1.h.s. of (3.2) and (3.3) but with some evident modifications: 
the elements XiXj - Xjxi must be replaced by those Xixj - Xjxi - A[xi , Xj] and the factors 
Q(O), i = 0, 1, must be deformed to those ci(o, A) depending on A (with c(w, A) = 
c(w)modh). Namely, with so and s&+~,_, normalized as in (3.4) we have 

coo-w, A) = 
?I- +a + nh), 

n-2 
Cl(P4, A) = --32/-4 + nh). 

4. Braided algebras 

Our next aim is to braid the above quantization procedure. Let us begin with a description 
of the space ~4 mentioned in Section 2. 

Let U, (sl (n)) be the quantum enveloping algebra corresponding to sl(n). In the chevalley 
gfXErat0rS ei, fi, hi, i = 1, . . . , n - 1, it could be described by the relations 

[hi, ei] = 2ei, [hi, hl = -2fi, (4.1) 

[hi 9 e4 = -e-i+l, [hi, .&I = .&I, (4.2) 

[hi,ej] = [hi, fi] = 0, Ii - jl > 1, (4.3) 

(4.4) 

efeifl - [2],eiei+lei + ei*lef = 0, (4.5) 

fffifl - [214fififlfi + fi*tfi2 = 09 (4.6) 

with 

[n] 
4 

= 4” -q- 
4 -4-l 

and qcxhi = exp(vahi). 

We choose a comultiplication map as follows: 

Ahi = hi @ 1 + 1 @ hi, Aei = ei @ 1 + qmhi @ ei, 

Afi = l@fi++@& 

Then the antipode has the form: 

s(hi) = -hi, s(ei) = -qhiei, s(fi) = -fiq+. 

(4.7) 
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Let & be a q-analogue of the adjoint representation of the Lie algebra sl(n) on itself, i.e., 
gy is the (n2 - 1)-dimensional U, @Z(n))-module with the highest weight 01 + w,_t . We 
want to explicitly describe the action of the QG U,(sZ(n)) on & in the fixed base of g4 . 
Further we denote this action by ad = ad,. Namely, the vector space & is generated by 
theelementsgi,j,i,j = l,.,., n,i #jand&,i = l,..., n-l.TheactionofCartan 
elements coincides with the classical one: 

ad hi (tk) = 0, adhi(gk,l) = (8i.k - &,l - &+l,k + &+l,&,l (4.8) 

Non-trivial matrix coefficients of the action of the Chevalley generators ei and fi of 
U, @l(n)) look as follows: 

adei(ga,i) = -gc+l, adei(gi+l,,) = gi,a, a#i,i+l, (4.9) 

ad, ei(gi+l,i) = ri* ad, ei(ri) = -Plqgi,i+lt adei(ti+d = gi,i+lt 

ad.hk,i+l) = -ga,i, adfi(gi,,) = gi+l,a, a#i,i+l, 

adfi(gi,i+l) = -ti, ad fiGi> = Plqgi+l,i, 
ad fi(tixtl> = -gi+l,i. 

(4.10) 

So, we get matrix coefficients of this action from the classical ones replacing the coeffi- 
cient 2 by its q-analogue [2], = q + q-' . 

Since gy is a Ug(sZ(n))-module, the tensor algebra T(G) can be equipped with a 
U, @Z(n))-invariant product in the sense of (1.5). In what follows the algebra T(G) and all 
its U, (g)-invariant quotients will be called braided. 

In fact, the braided algebra T(G) is “too big” for us. We are really interested in its quotient 
over the kernel of map sending this algebra into End iklz where M$ is a q-analogue of the 
above Verma modules with o = ~LLWI. Namely this quotient with p properly expressed via 
the parameter h plays the role of our “double quantum” object dh,q. 

Let us describe the mentioned kernel. To do this we need a decomposition of the U, (sZ(n))- 
module g, @2 into a direct sum of irreducibles. 

Proposition 3. The formulae beZow describe all highest weight vectors of reducibles in the 
Uq(sZ(n))-module gf2(n 2 4): 

s2w,+2w,-, = g1,n 8 g1,,, 

S2,,+WnA =g1,, 8 g1,,-1 - q-lglJ-, @I g1,,, 

s?z+2w,-, = g1,n @ g2,, - q-lg2,, @ g1,,, 

sw2+w,-2 = 4g1,rI 63 g2,n-1 + q-lg2,n_l @ g1,, 

-g1,n-1 63 g2,n - g2,n 8 g1,,-I 

St, +w,_, = g1,2 @ g2,n + qg1.3 8 g3.n + . . . + qn-3gl,n_l @ gn_l,n 

(4.11) 

(4.12) 

(4.13) 

(4.14) 



398 J. Donin et al. /Journal of Geometry and Physics 28 (1998) 384-406 

n-1 [n - k14 n-1 

+q-2 c ~ k=, ,n,4 tk ‘8 gl,n - qnw2 5 g1.n @ %tk (4.15) 

d,+,_, = g2,n CQ 81,2 + q-lgx,, x g1,3 + . . . + q-n+3gn_l,n @ g,.,_l, 

-4 
1-n [n - klq tk 

[n]q ’ 

so = n-’ Mqb - jlq 
c ti C3 tj + 

n-l [_&[n - il4 
[nl, 

C 

blq 
ti @ tj 

i,j=l,isj i,j=l,i>j 

(4.16) 

+q C qjeigi, j 63 gj,i + 4-l C qjpigi,j 8 gj,i. 

i<j izj 
(4.17) 

Because of the multiplicity of the highest weight 01 + wn_ 1 component in this decom- 
position it is not so clear what are natural q-analogues Zz of the symmetric Z+ and the 
skewsymmetric I_ components in gF2 (except of the sZ(2) case). 4 

Let us consider a way to introduce a decomposition gF2 = Zz @ Z! arising from an 

operator 3 discussed in [8,11]. In Drinfeld’s realization of the QGU, (g) the operator s is 
defined by formula (2.6) but without the factor e “‘/* So, it is evident that this operator is . 
involutive. Moreover, being restricted to g, @* it has the same eigenspaces as the YB operator 

S but with eigenvalues f 1. Namely, to pass from S to 3 we must replace the eigenvalues 
of S close to 1 (resp., to -1) by 1 (resp., -1) assuming that (q - 11 << 1. 

We complete this section with describing the action of 3 on the isotypical component 
of the highest weight wt + w,_i (its action on other components of gF* contains no new 
infromation for us). We use this computation in Section 6. 

To do this we need a partial information on the quantum universal R-matrix in the sl (n) 
case. 

It is well known that the universal R-matrix R for the algebra U,(g) can be presented by 

R = R. . qCci.ihi@h,, (4.18) 

where (ci,j) is the matrix inverse to the Cartan matrix of g and l7e belongs to the tensor 
product of quantized enveloping algebras of nilpotent subalgebras ni of g: ‘& E U, (n+) 631 
Uq(n_). Moreover, Ru = 1 mod n+U,(n+) 63 Uq(n_). 

In the sZ(n) case formula (4.18) has an especially simple form after embedding of R into 

U,(A) @ Z-J,(&): 

where hi = ci - ci+t, i = 1, . . . , n - 1. 

4For other simple Lie algebras g such natural q-analogues Zz exist since gB2 is multiplicity free as a 

g-module but the deformations T(g)/{Zk) -+ T@)/{Zz) are not flat. In the sZ(n) case one can split I$’ 

into a direct sum of components 1: in such a way that these deformations are flat. It was shown in [6] by 

means of an embedding g, + U,(g) which is slightly different from that considered in [30]. 
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Let us compute the expressions S(S& +W,_, ), i = 1,2, where S = a(ad 8 ad)?? is 

the image of the universal R-matrix in the tensor square of the adjoint representation 
multiplied by the flip. The commutativity of S amd A(x) implies that S(S&+on_,) = 

Cj aLjs&+,n-, , i, j = 1,2, for some constants Ui, j . 
The space g4 can be decomposed into three parts: 

g, = g+t + g-3 

where g+ is generated by the vectors gi,j, i < j; g_ is generated by the vectors gi,j, i > j; 
and t is generated by the elements ti . Their crucial properties are 

LJ,(nA)t c gh and U,(n&* c g*. 

One can observe from the explicit expressions for S&+w,_, that 

(4.20) 

(4.21) 

Due to (4.19) we have 

which means, by virtue of (4.21), that 

W&+,~_J = Y-3~&+w,_, . (4.22) 

Analogously, 

S(%, +w,-, ) = q3-2nS&+W,p1. (4.23) 

Formulae (4.22) and (4.23) show that the operator S is diagonal on the isotypical com- 

ponent vw4,+w,-, @ vo,+wy no, (as well as in the whole space g:“), has eigenvalues *q-” 

there, and the corresponding eigenvectors are 

& = q2-nG,+w,~, f q-l$+W,_, . (4.24) 

This result is true for n 1 3. The case n = 2 is left for the reader (here S+ = 0). 

5. Braided modules 

Definition 1. We say that M is a braided T(G)- mo u e d 1 ( or, simply a braided module), if 
M is equipped with the structures of Uq(sE(n))-module and of T(g)-module, and these 
structures are related as 
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u . (gm) = (u(l) . g)(u@) . m) 

for any u E Uq(sl(n)), g E T(g,) and m E M. 

(5.1) 

The braided algebra T (g4) together with the category of its braided representations can 
be described also in the language of intertwining operators. Let M be a U, @Z(n))-module. 
Then, by definition, the (second type) intertwining operator r@ is a U, (sl(n))-morphism 

!?+g@M+ M. (5.2) 

The components !@’ : M + M are defined via fixing the base &I in &I: 

P?(m) = *k(ga @mm). (5.3) 

Thus, M is a braided T(gq)-module if and only if there exists an action of the intertwining 
operator Wk on M in the above sense. 

Our next goal is to perform an explicit construction of certain braided modules. More 
precisely, we will define a U, (sZ(n))-morphism 

T(g4) + EndV,4, w = ~wt, PEG, (5.4) 

where Vi is a q-deformed finite-dimensional module. After that we will extend this con- 
struction to the q-deformed Vet-ma modules. 

Since the module End V, is multiplicitly free, the component isomorphic to g is rep- 
resented in it only once. The same is true for the U,(sl(n))-module Vz. This enables us 
to define the map (5.4) in a unique way, up to a factor, assuming it to be a U,(sl(n))- 
morphism. Moreover, the space End V, does not contain any component with the highest 
weights w2 + 2wn_t and 2wt + w,_2 (it is also true in a q-deformed case). 

The U, (g)-modules possessing these two properties were called braided in [ 191, here we 
use this term in a more general sense. 

Let us now describe the map (5.4) explicitly. Since the algebra T (gg) is generated by the 
space g, and U, (sZ(n)) is generated by the Chevalley base, it suffices to ensure relation (5.1) 
for u = hi, ei , fi and for g E &. Below we write down these relations using the following 
traditional notation. Let M be a U, (sl(n))-module and let x E M be an eigenvector of the 
action of the Cartan subalgebra h of U, (sZ(n)). Then we denote its eigenvalue by k(x) E h*, 
so that 

hi (X> = C&i - Ei+l, h(x)) . XT 

si = diag(O, . . . , 0, 1, . . . , O), 1 at ith place. 

For instance, the weights It(g) of the representation ad in the space gs coincide with the 
classical ones 

h(gi,j) = &i - &j, h(ti) = 0 

and the action of the Cartan elements in g4 is given by the relation adhi = (Ei - 

Ei+l* h(g)) ’ g. 
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Proposition 4. Let M be a finite-dimensional lJg(sl(n))-module. Then M is a braided 
T (gq)-module if and only iffor any g E gs the following relations hold: 

[hi, jl = adhi( 0.3 
[ei, glq-(Ei-&i+l.A(g)) = ad ei (g>, (5.6) 

[k~gl=adfi(g)~qhi. (5.7) 

Here 

[a, b14 = ab - qba 

and all the brackets are understood in the operator sense. 

Proof It suffices to say that for any finite-dimensional U, (sl (n))-module M we treat 

EndM=M@M* 

as a left U, (sZ(n))-module where the action of U, (sZ(n)) on M* is defined by means of the 
antipode s: 

(v, u * CY) = (0) * 21, tt), 
u E M, 6 E M*, u E U,(sZ(n)). 

The rest is a substitution of (4.7) in (5.1). 
Let V& be the first (vector) fundamental representation of the algebra U, (sl(n)). Simi- 

larly to the classical case let us consider the irreducible finite-dimensional representations 
I$,,, , u E Z+, of U,(sZ(n)) with the highest weights pot in what follows we will omit 

9). 
One can easily check that the operators ei , fi , hi E End Vu,, , whose non-trivial matrix 

elements are described in (5.8) satisfy relations (4.1)-(4.6) and thus define an action of the 
algebra U, (sZ(n)) in the vector space VP,, : 

eilml,..., m,) = [mi+dslml,. . . , mi + 1, mi+l - 1,. . . , m,), 

filml,..., m,) = [milslml,. . . , mi - 1, &+I + 1,. . . , m,), (5.8) 

hlml,..., 4 = (mi - mi+l)lml, . . . , mi, mi+l, . . . , m,). 0 

Proposition 5. There is a unique structure (up to a multiplicative constant f2 E C) of a 
braided T (gq)-module on the U, (sl (n))-moduZe V,,, . 

The action of generators of T(g) in the braided module V,,, is: 

gi,jlml, . . . , m,) 

= ~(~_~)qj+("l+"'+mi)-(mj+...+m,) 

x[mjlq(ml ,..., mj+l,..., mj-l,..., m,) fori<j (5.9) 
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gj,ilmlt...,mn) 

= +L)q i-l+(ml+“~+mi_~)-(mj+~+~“+~~) 

X [milylmt,. . . ,??Zi - 1,. . . ,WZj + 1,. . . ,??Z,) for i < j 

tiIml,...,mn) 

= a.)q 
i+(ml+~.~+m,-1)-(rn;+2+..~+~~) 

x ([21qqMi-Mi+l _ qmi+mi+l+l _ q-mi-mi+l-l) ,m, 

4-4-l 

m ) 

,...1 n . 

(5.10) 

(5.11) 

PUOO& The proof goes by induction on the rank n. Let us start from the U, (sZ(2)) case. In 
this case relation (5.7) implies that 

[g2,1, fll = 0. (5.12) 

From the commutation relation (5.5) of g2,1 with a Cartan element we see that in addition 
g2,1 has the same matrix structure as ft and thus these two operators are proportional to 
each other. Applying relation (5.6) twice we get a description of the operators tl and gt,2. 
Finally, we check that relations (5.5)-(5.7) are satisfied. 

The passage to U, (sZ(3)) looks as follows. We know from the sZ(2) case that the operator 
g2,1 has the form 

g2,1 = c+3).fl. (5.13) 

We wish to find the normalization constant a(m3). Applying the following particular cases 
of (5.6) and of (5.7): 

g3,1 = Vi> g2,d4-h2, g3,2 = -[e1, g3,11 

to the ansatz (5.13), we get a description of the operator g3,2, depending on the choice of 
I. But we know again that 

g3,2 = dm1>f2. 

This gives a reccurence equation on (1l(ms) which unique (up to constant factor) solution is 
o(m3) = 9-Q. Then from (5.7) we get a description of other generators of g4 in the sZ(3) 
case. The general induction step is similar. 

Now let us pass to q-deformed Verma modules. Let M, = M$ be such a module. It 
also possesses a base labelled by (m2, . . . , m,), rni E Z+. For any Al. E C there exists a 
U, (sZ(n))-invariant map 

pw : T(g,) + EndM,, w = ZMOI. (5.14) 

This map is also defined (uniquely up to a factor) by formulae (5.9)-(5.11). 
We are interested in the ideal Ker p0. It is also generated by its quadratic part Z4 (p, CX) = 

Ker,& f~ (C @ g4 @ gF2). To describe this quadratic part we consider the images of the 

highest weight elements SO, S&+@,_, in gF2 with respect to the map ,&. 
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The operator SO is scalar (we omit the symbol ,&>: 

2 n [n - 114 
so = ahu> 4 [$ blqb + nl,ld, (5.15) 

and the operators s&+~,~, and s&+~,_, are proportional to the operator g 1, ,, : 

St, +04-l = auk2 
._2[n - 1l,b++lq - [Plyg,,n, 

blq 

s:,+CJ,_, = a(P)4 
[n - llq[Plq - [P + nlq g, 

blq 
,n. 

(5.16) 

(5.17) 

Finally, we have the following description of Z, (p, CY). 0 

Proposition 6. The subspace Z4 (p, a) c (C @g, @gF2> is a U, @l(n))-module generated 

by 
(9 the highest weight vectors s20,+wn_2, h2+2w,-, , sq+w,_2, 

(ii) the following combinations of highest weight vectors: 

s&+Wn_, - abL)q 
n-2[n - ll,[w++l, - [PI~~,,~, 

bl, 
(5.18) 

s2 WI+%-1 -ah? [n - llqblq - b + nl, gl,,, 
bl, 

2 n 1n - 11, 
so - a&L) 9 ,nl, [cLlpb + nlq . 1. 

(5.19) 

(5.20) 

Therefore for the elements S+ defined by (4.24) we have the following formula: 

JZk = o(P) 
[n - II4 f 1 

blq 
CcL + HI, f [~lqh,n. (5.21) 

6. The algebra Ah,, and quantum CPn type orbits 

Let us define now the two-parameter algebra dh,4 using the results of the previous 
sections. To do this we must express I_L via A and choose the factor a(p) in proper way. 
In the classical case (q = 1) by setting h = p-l, a(p) = aoh we get an algebra which 
differs from the above algebra At, by a renormalization of the parameter. Thus, the algebra 
Ah/k&, is just the function algebra on the corresponding orbit (labelled by (~a). 

In the quantum case (q # 1) we suppose that lg] # 1. This condition is motivated by 
our desire ti have [/J]~ + 00 as p + 00. 

Let us set 

a0 
U(P) = G and ‘Pfnl = Y(q) +h 

[Plq 
(6.1) 
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where y(q) = qn if 1q 1 > 1 and y(q) = qen if 1q 1 < 1. We use (6.1) as the definition of 
the parameter fi. 

Then the elements (5.18)-(5.20) become 

dJ,fw,_, -WI 
&[n - ll,(y(q) +A) - 1 

hl, 
g1,n* 

iY4+w,_, - a04 
[n - 114 - (Y(4) + A) gl 

[nlq ,nt 

* * in - 114 
so - a?)4 ~(Y(4) + A) . 1. 

Meanwhile, the element s_ defined by formula (5.21) takes the form 

s- = (Yg in - 11, + 1 
[nlq 

((Y(4) +h) - lkl,,. 

(6.3) 

(6.5) 

Now let us introduce the algebra -AQ as the quotient of T (g ) over the ideal generated 
by the elements listed in Proposition 6 (i), the elements (6.2)-(6.4) and all their descendants. 
Expressing p via A and substituting it in formulae (5.9)-(5.11) we can realize the algebra 
Ah,q as a subalgebra in End Vz[[A]] with a fixed w(a(p) is assumed to be expressed via 
the formula (6.1)). 

This operator realization of the algebra dh,q implies that deformation A + dh,q is 
flat. In fact, it suffices to note that the algebra dh,4 contains all components Vk(w, +wn_, j , 
k = 0, 1,2, . . . . This follows from the fact that the images of the elements gt,, are non- 
trivial operators for any k = 0, 1,2, . . . (recall that lq I # 1 and therefore q is not a root of 
unity). 

The arguments analogous to the Nakayama lemma (cf. [2]) show that the algebra $24 = 
dh,q/hdh,q also contains all components Vk(wl+w,_,) and therefore the deformation 
d + A, is flat. 

Our next aim is to verify that the Poisson pencil corresponding to the algebra dh,y is just 
that (1.3) with R-matrix (1.4). To do this it suffices to compute the brackets corresponding 
to one parameter deformations A + -4, and A -+ dh,q/(q - l)dh,4. It is easy to see 
that the algebra d*,q/(q - l)dh,q is just that discussed in the beginning of this section. 
Therefore the corresponding Poisson bracket is proportional to the KKS one. 

Consider now the algebra _A4. Let us remark that this algebra differs from analogous 
one-parameter algebras from Donin and Shnider [ 1 l] and Donin and Gurevich [8]. The 
latter algebras were &commutative where the operator 3 is defined in Section 4 and the 
algebra d4 is no longer S-commutative. Instead of the relation s_ = 0 taking place in 
an S-commutative algebra we have now (6.5) with A = 0. In [8] it has been shown that 
the Poisson bracket corresponding to an S-commutative algebra on a symmetric orbit is 
proportional to the R-matrix one. 

The S-commutativity default of the algebra _44 is measured by the th.s. of formula (6.5). 
In the quasiclassical limit this term gives rise to a contribution proportional to the KKS 
bracket. This completes the proof. 
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In this connection the following question arises: what algebra of the family dh,q can be 
considered a q-analogue of the commutative algebra of functions on the CP” type orbits 
and therefore can be called a quantum or braided CP” type orbit? In [8] (following [ 111) 
,$-commutative algebras were considered in such a role. 

However, from the representation theory point of view it is more reasonable to consider 
the algebra A, as a “quantum (braided) orbit of CPn type” since it is the only algebra from 
the family d*,q which cannot be represented in a q-deformed Verma module V,,, with 
any CL. From this point of view it is a singular point like in the classical case. 

One more way to define a version of a q-commutative algebra is discussed in [6] (cf. 
footnote 4). 

So, there is no universal way to single out a braided analogue of a commutative algebra 
from the family dh,q. All the above candidates for this role have their own motivations. 

Let us remark that in s/(2) case our approach leads to Podles’ quantum sphere (cf. [32] 
where this algebra is also equipped with an involution *). We do not consider here the 
problem of a proper definition of involution operators (cf. [lo] for a discussion on this 
problem). We could only emphasize that in our approach all representations of algebras in 
question are U, (g)-morphisms. So, if we want to consider a *-representation theory of this 
algebra we must first introduce a *-operator in the space End V in the spirit of super-theory: 
the classical property (AB)* = B*A* will fail. 
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